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mb SFR Fuels Experience in the US
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B Metallic Fuels
— EBR-I, Fermi-1, EBR-IIl, FFTF
— U-Fs, U-Mo, U-Zr, U-Pu-Fs U-Pu-Zr, others
B Mixed Oxide Fuels (MOX)
— EBR-Il, FFTF
— (U,Puj243)0,
B Mixed Carbide Fuels (MC)
— EBR-Il, FFTF
— (U,Pu)C w/15% (U,Pu),C,
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ML Metallic Fuel Design (EBR-II)
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Cledding

Wire

Fuel Shug
Top End Plug Bollom End Plug

Features of a Metallic Fuel Pin (from Pahl, et al, 1990)
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ML WMetallic Fuel Design (FFTF)
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End Cap Top . O
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5 o2 Weap Wire HT9

A J g )

Tag Gas —

Capsule i~

e Cladding HT9

FFTF Series Ill.b Metallic Driver Fuel Design (from Pitner and Baker, 1993)
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m Important Metallic Fuel Performance Phenomena
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¥ Irradiation growth

B Fuel swelling and fuel-cladding
mechanical interaction (FCMI)

B Gas release
B Fuel constituent redistribution

B Fuel-cladding chemical
interaction (FCCI)
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Metallic Fuel Behavior—Swelling &
Restructuring
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As fabricated U-20Pu-10Zr

s

X420B at 17% BU

X419 at 3% BU

* Redistribution of U and Zr occurs early
» Inhomogeneity doesn’t affect fuel life

X423A at 0.9% BU



m Metallic Fuel Behavior—Swelling & Gas Release
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m Swelling NV
— Low smear density fuels ;i, o
— Rapid swelling to 33 vol% ¥ 5%,
at ~2 at.% burnup ?ﬁ:ﬂ!x&&y&
® Gas Release E:'.'; :
— Inter-linkage of porosity at ?“*..3‘7 A
33 vol% swelling results in ‘r‘.‘, . "; ,.'wsg
large gas release fraction "i’;‘!?';"'-' 1 s

— Decreases driving force fo 1! d ‘:g,-j; et
continued swelling “ IR Q; o & Fre e
‘1'.'.0) y
2? "bd.\%,!'6 u{: SR T R
100 microns
U-19Pu-10Zr (y-phase)

at 2 at.% burnup
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Redistribution
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Metallic Fuel Behavior—Fuel Constituent

Lower
Melting
Phase

Cladding

U-Pu-Am-Np-Zr
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Metallic Fuel Behavior—Steady-state FCCI

B Fuel-Cladding Inter-diffusion

— RE fission products (La, Ce, Pr, Nd)
and some Pu reacts with SS cladding

— Interaction product brittle
— Considered as cladding wastage

U-19Pu-10Zr with D9;
12 at.% burnup
(from Pahl, et al, 1990)

100 microns
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ML, MOX Fuel Design (FFTF)
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Plerum-to-fusd Rato « 10 Tﬁg Capede Plenum-to-Fusd Rstio = 10

Flerum __=) Pin Length = 238 cm oo™ —#9 Pin Length = 238 cm
Type 302 T
: ype 302
e s, B Aaeitor 16 5cm Aneadar UO; Stainkss Stewd
Spring Banket Pallet Stack Spring
U0, insulstor 5.3%2.mm Outer Diameter
~ Pellots 1.473-enm Inner Diamater
] 5.55-mm Outer Diameter
Ammm Diameter o M 1.473-mm inney Dameter
91 dd-cm MOX 90.4% TD Nominal 91,44 cm MOX | 92% TD Nominal
PuogLX) { B 855% TD Smear T PUO U0, 80% TD Smear
Palal Stock 0.0888-mm Dish Pelet Stock
Cladding Cladding
U0, Inssator , Diamn , 6 858-mm Disnetar
< Palats ggfmm thick oter 165-cm Banket Stack 3?699 mm thick

20% Cold-Worked
Tyvpe 316
Stainkss Stesd

a) b)

FFTF He-bonded MOX Fuel: a) Driver Fuel and b) Core Demonstration Experiment Fuel
(from Bridges et al, 1993)

Aeflactor
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w_l_) Important MOX Fuel Performance Phenomena
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B Fuel swelling and FCMI

B Fuel restructuring

B Gas release

m FCCI

B Fuel-coolant compatibility

-
PROF-3 G 50 um
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ML MOX Fuel Behavior—Fuel Swelling and FCMI
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)

Diameter Change

Acative
Concentration

Diameter and cesium fission product accumulation in high-temperature MOX pins,

HT9-clad (a) and D9-clad (b). Cs interacted with MOX fuel causing FCMI.
(from Bridges, et al ,1993)
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ML MOX Fuel Behavior—Restructuring
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RADIUS OF CENTRAL YOID, mils
PERCENT OF NOMINAL AS-BURT
PELLET RaDWUS

-
4

MOX fuel ceramography of FFTF driver fuel produced by Kerr-McGee and Babcock and Wilcox,
showing restructuring as a function of burnup. (from Hales, et al, 1986)
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m MOX Fuel Behavior—Gas Release
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B MOX fuel operated at high temperature and undergoing
restructuring exhibits high gas release.

(from Lambert, et al, 1994)
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MOX Fuel Behavior—FCCI

=
B Hypostoichiometric MOX for SFRs
— As-fabricated O/M < 2.00 to suppress E 20}
free oxygen at high burnup, mitigate ?
FCCI 57 S
— O/M ratio affects fabrication ) ‘
— O/M ratio affects properties Ll R
Melting T vs O/M
s (from Morimoto, et al, 2005)
r{._- O - «Samplel
; ol © O - -Sumplc2
g o - -Swwpiel
g G- Sample 1 — MOX + MAs
: Oiiigeiililiinang | Sample 2 - MOX+MAs+REs
] Sample 3 - MOX+MAs+REs+NMs
2 (from Morimoto, et al, 2005)
20 + +
10E-14 1OE-12 1.0E-10 1OE-OR
Oaygen purtisd peessure (alm)
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.“ MOX Fuel Behavior—Fuel-coolant Compatibility
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B Run-beyond-cladding-breach
(RBCB) of MOX accompanied by
fuel/Na reaction and initial crack
extension

B Fuel loss can be related to degree
of interaction.

B Reactant layer becomes coherent
and inhibits further reaction with
coolant.

Typical breach extension in
induced midlife failure,
EBR-lIl K2B test.

(from Lambert, et al, 1990)
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Stainless-Steel Cladding & Duct Performance

B Performance Issues
— Cladding dilation
— Duct dilation, bowing, or twisting
¥ Irradiation Behavior
— Void swelling (AS)
— lrradiation creep (AS & FMS)
— lrradiation embrittlement (AS & FMS)
H Alloys to Address Issues
— Advanced austenitic stainless steels
— Ferritic & tempered-martensitic stainless steels
— Oxide-dispersion strengthened steel alloys
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Base Fuel Technology: US Experience
Crawford, Porter, Hayes, Journal of Nuclear Materials, 371: 202-231 (2007).

Qualification

10at.% bu in EBR-Il &
FFTF

bu (CDE)

MOX in 316SS to 10 at.%
bu

Metallic Mixed Oxide Mixed Carbide
Driver Fuel > 120,000 U-Fs rods in >48,000 MOX rods in None applicable
0 . 304LSS/316SS 1-8 at.% bu | 316SS (Series I1&ll) 8 at.%
peration ~13,000 U-Zr rods in bu
316SS 10 at.% bu
Th rough U-Zr in 316SS, D9, HT9 = MOX in HT9 to 15-20 at.% None applicable

Burnup
Capability &
Experiments

600 U-Pu-Zr rods; D9 &
HT9 to > 10 - 19 at.% in
EBR-Il & FFTF

4300 MOX rods in 316SS to
10 at.%; fab var’s; CL melt
3000 MOX rods in EBR-II;
peak at 17.5at.% bu

2377 MOX rods in D9 to 10-
12 at.% bu; some at 19
at.% bu

18 EBR-Il tests with 472 rods in
316SS cladding; 10 rods up to 20
at.% w/o breach

5 of which experienced 15% TOP
at 12 at.%

219 rods in FFTF, incl 91 in D9, 91
with pellet & sphere-pac fuel

Safety &
Operability

6 RBCB tests U-Fs & U-
Pu-Zr/U-Zr(5)

6 TREAT tests U-Fs in
316SS (9rods) & U-Zr/U-
Pu-Zr in D9/HT9 (6 rods)

18 RBCB tests; 30
breached rods

4 slow ramp tests

9 TREAT tests MOX in
316SS (14 rods) & HT9 (5
rods)

10 TREAT tests (10 rods; Na or
He bond); < 3-6 times TOP
margins to breach

Loss-of-Na bond test; RBCB for
100 EFPD; Centerline melting test
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B Metallic Fuels B Oxide Fuels
—  Pre-failure Behavior —  Pre-failure Behavior
» Substantial axial expansion » Axial relocation (apparently, upward
> Cladding strain due to gas pressure axial motion)
> Possible fuel-cladding liquefaction » Cladding strain due to FCMI and
— Failure Behavior gas pressure

> Failure generally near top of fuel — Failure Behavior

column » Failure generally in upper 1/3 of fuel

> Stress rupture due to gas pressure col umn _
in cladding thinned by eutectic-like » Cladding melt-through with gas
penetration and weakened at high pressure and FCMI, cladding
temperature weakened at high temperature

— Post-failure Behavior — Post-failure Behavior

> Possible fuel injection into coolant » Fuel dispersal into coolant

> Low stored energy, no reaction with » Relatively high stored energy,
coolant, some local sodium voiding reaction with coolant, local sodium

voiding
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N Transient Phenomena—Metallic Fuels
Fuel/Cladding ‘Eutectic’ Formation
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U-10Zr / HT9 at 800°C, 1 hr
(from H. Tsai, et al, 1990)

1 - Unaffected cladding
2 - Fuel/cladding solid-state interaction
3 - Fuel/cladding liquid phase
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B Metallic Fuels (U-Zr or U-Pu-Zr)

Acceptable performance and reliability demonstrated up to 10 at.% burnup, with
capability demonstrated to 20 at.% burnup

Robust overpower capability demonstrated in TREAT tests: ~ 4 to 5x’s nominal
power; failures near top of fuel column; pre-failure axial expansion

Performance issues typically creep rupture at high burnup, accelerated due to
FCCI.

Performance phenomena with U-Fs, U-Zr & U-Pu-Zr are the same. Burnup,
temperature and cladding performance are key variables

B MOX Fuels
— Acceptable performance and reliability demonstrated up to 10 at.% burnup, with

capability demonstrated to 20 at.% burnup

Robust overpower capability demonstrated in TREAT tests: ~ 3 to 4x’s nominal

power; well above primary and secondary FFTF trips; failures near core mid-
plane; pre-failure axial fuel motion

Performance issues typically creep rupture at high burnup, accelerated due to
FCMI (and FCCI if O/M not controlled).

B Metallic and MOX fuel performance in SFRs are both well known, with
good experience in the US (MOX fuel in France, Japan)
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Experience with Fuels Containing
Minor Actinides
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] SFR Transmutation Fuels with Minor Actinides
(MAs) and Rare Earth (RE) Fission Products
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B Unique Features of SFR Transmutation Fuels

— Pu content, which depending on CR selected my
be higher than historic database (with
corresponding decrease in U content)

— Minor actinides (Am, Np, Cm) present in significant
quantities

— Rare earth fission product (La, Ce, Pr, Nd) carry-
over from recycle step may be non-trivial

B Gives Rise to Challenges and Unknowns

— Need for remote fuel fabrication

— Likely need for new fabrication methods (e.g., due
to Am volatility; waste minimization, etc.)

— Effects on fuel performance must be determined
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“1.} Metallic Fuel with MA—X501 Fabrication
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U-20.2Pu-9.1Zr-1.2Am-1.2Np
Injection cast at 1450°C
Inhomogeneous microstructure

Am and Np segregate to phases with variable
composition

s
QiP e

".
Ry 6U
com N 3 Pu
e~ Y Q L 6Np
B tﬁ& ?:_#‘.g P 86 Zr
y 286 Uy ﬁ"
be¥ © % @ ; 21-47 U
8 “f; 14-49 Py
o) | 9-19 Zr
0-25 Am
0-18 Np
Impurities
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Metallic Fuel with MA—X501 Irradiation

S s N T s

M

- HT9 Cladding. -

B LHGR =450 W/cm

B PICT =540°C

M Burnup = 7.6%

m 21Am transmutation = 9.1%

B Gas Release
— Fission gas = 79%
— Helium = 90%
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AFCI Fuels Testing in the ATR East Flux Trap

B 4 Capsule Positions in E
— Cd shrouds in 1,2,3,4
— 6 rodlets per capsule
— 24 rodlets irradiated

“A” Positions

simultaneously ‘8" Positions

N

D
L

B Capsule Limits
— LHGR = 500 W/cm
— PICT =650°C "H Posiions
— Capsule pressure < 975 psi

“I" Positions /

N

N
L

\
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=

’\ﬁi\l\\. "@/§
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t\%u .=f
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0s-18

0s-19
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0s-21

0
Il

/%." N

15 >

@hchen
N N\
R

Fuel assembly

Flux trap
guide tubes

Neck shim rods

d Hng
East Flux
Trap

Control drums

In-pile tubes

Capsule
/ Irradiation Tank

06-GA50191-03
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ATR Rodlet-Capsule-Test
Assembly

Top Endplug —» 4
HT-9 Rodlet Cladding —»
SS Spring — 3>
£
(o]
. 0
He Gas Plenum —%¢ 6in. <UE,
whd
Q2
Insulator Pellet — -8
(14
. O
Oxide Fuel Column —» >
LL
Insulator Pellet —» |
Bottom Endplug —» v

|
Upper Spacer —EFHj
/F

I

|

Rodlet 17f
\

e

Rodlet 2—p|

-

Rodlet 6 —»}]
=

Bottom Spacer —{

52 i

Cd

Experiment —p»|

Basket

CapsuleAs<:nbly

—
m=l=x
. —

110.75 in.

Irradiation Test Assembly
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AFC-2A,B Currently Under Irradiation in the ATR

B AFC-2A,B Test Matrix

Rodlet

AFC-2A&B

1

a b~ WO DN

6

U-20Pu-3Am-2Np-15Zr
U-20Pu-3Am-2Np-1.0RE-15Zr
U-20Pu-3Am-2Np-1.5RE-15Zr
U-30Pu-5Am-3Np-1.5RE-20Zr
U-30Pu-5Am-3Np-1.0RE-20Zr

U-30Pu-5Am-3Np-20Zr

RE=6% La, 16% Pr, 25% Ce, 53% Nd

B AFC-2A,B Test Objectives

— LHGR =350 W/cm; PICT = 550°C

— Burnups of 10 at.% (2A) and 25 at.% (2B)

— Group recovery of 30 year-cooled PWR TRU

— Effect of RE fission product carry-over on FCCI

[~—— RODLET TOP ENDPLUG

sl
LA F

‘N~a—— RODLET CLADDING
. SST, TYPE 421 (HT-9)

Jole——— GAS PLENUM

SODIUM

METALLIC FUEL PINS (1-2)

RODLET BOTTOM ENDPLUG
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AFC-2C,D Currently Under Irradiation in the ATR

B AFC-2C,D Test Matrix

Rodlet

AFC-2C&D

1

o o0 B~ W N

(Uo.75,PU0.20,AM0 03,NP0.02)O1.05
(Uo.80,PU0.20)O1.08
(Uo.75,PUo.20,AMg 03,NP0.02)O1.08
(Uo.75,PU0.20,AMg 03,NP0.02)O1.95
(Uo.80,PU0.20)O1.08
(Uo.75,PU0.20,AMg 03,NP0.02)O1.98

B Test Conditions

LHGR = 350 W/cm
PICT = 550°C

Group recovery of 30 year-cooled
PWR TRU

B Test Objectives

Study effect of O/M on FCCI
Include MOX as control

High CR (20% Pu) for initial oxide
test

Discharge criteria
2C: 2 10 at.% burnup
2D: = 25 at.% burnup
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m Comparison of Spectra (ATR vs. LMFBR)

B ATR Neutron Energy Spectrum

— Highly thermal spectrum in EFT with no
neutron filter

— Unaltered spectrum will result in

significant self-shielding in dense,
highly-enriched fuels

B Cd-shroud Integral with Experiment
Basket
— Efficient removal of neutrons with
energies below cadmium cut-off
B Resulting Spectrum

— Filtered spectrum in experiment does
not have prototypic fast neutron
component

— Epi-thermal component responsible for
most fissions; much more penetrating
than thermal neutrons

— Test fuels are free of gross self-
shielding

Normalized flux per lethargy
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4]
1.0E-7 3~
3 i
|
B Cd-filter
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1.0E-8 En LMFBR
1.0E-9 T i T i T
1.0E-10 1.0E-8 1.0E-6 1.0E-4 1.0E-2 1.0E+0 1.0E+2

Energy in MeV
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Radial Power & Temperature Profiles

® How prototypic are AFC rodlets .
irradiated in the ATR? Py .
— Assessed by analysis =
— Radial power profiles calculated wW/MCNP ~ §” )
— Depletion in fuel and Cd shroud " o o s s ey 3389030523223230
calculated w/ORIGEN (MCWO) S0 e Lot
— 1-D thermal analysis using radial powers e —— 2

0.0
2300

B Resulting temperatures for AFC-2C,D
oxide rodlets TR, =

— 3cases: SFR, unshrouded ATR, ATR - o o
w/Cd shroud e WN\

— w/Cd shroud, peak-to-avg power at fuel \\
periphery is 1.22; fuel central temperature ™ e
58°C less than SFR (~400°C less for e
unshrouded case) \\

AFC-2C,D Oxide Fuel Design
700 A PICT = 550°C
LHGR = 350 W/cm

(°C)

ti

Temp

500

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r/R
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B SFR Fuels Experience in the US
— Fuel Types
— Fuel Performance Issues
— Experience/Testing

B Experience with Fuels Containing Minor Actinides
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